Test di matematica
31 marzo 2004

Per ogni domanda individuare l’unica risposta corretta tra le quattro proposte: A, B, C, D.

1. Sia $a \neq 0, b \neq 0$. Semplificare l’espressione
 $$\frac{(\frac{a^3}{b^3})^2}{\frac{b^2}{a^2}}$$
 A $\frac{a}{b^4}$
 B $\frac{a^9}{b^8}$
 C $\frac{a^{20}}{b^{12}}$
 D $\frac{a^{4/5}}{b^3}$

2. Semplificare l’espressione
 $$\frac{2\sqrt{5}}{\sqrt[3]{5}}$$
 A $\frac{2}{\sqrt{5}}$
 B $\sqrt{2}$
 C $2\sqrt{5}$
 D 10

3. Quale delle seguenti disuguaglianze è corretta?
 A $-0.01 < -0.001$
 B $\frac{1}{2000} > 0.002$
 C $\frac{1}{10^3} < -\frac{1}{10^3}$
 D Nessuna delle precedenti risposte è corretta.

4. Sia $x > 0, x \neq 1$. Semplificare l’espressione
 $$\frac{\sqrt{x+1} \cdot x+1}{x-1} \cdot \frac{x+1}{\sqrt{x-1}}$$
 A $(x-1)(x^2-1)$
 B $\frac{x+1}{(\sqrt{x}-1)^2}$
 C $\frac{\sqrt{x+1}}{\sqrt{x-1}}$
 D $(\sqrt{x}+1)(\sqrt{x}-1)$

5. L’espressione $\frac{x+5}{6-x}$ è positiva
 A Per $x < -5$ e per $x > 6$
 B Per $-6 < x < 5$
 C Per $x < -6$ e per $x > 5$
 D Per $-5 < x < 6$
6. Quale delle seguenti uguaglianze è vera per ogni valore di \(x \) e di \(y \)?

A \(|x - y| = |y - x| \)
B \(|x - y| = |y - y| \)
C \(|y - x| = -|x + y| \)
D \(|x + y| = |x| + |y| \)

7. Risolvere l’equazione

\[8 - x = \frac{x - 8}{x} \]

A \(x_1 = 0, \ x_2 = -8 \)
B \(x_1 = \sqrt{8}, \ x_2 = -\sqrt{8} \)
C \(x_1 = -1, \ x_2 = 8 \)
D L’equazione non ha soluzioni reali.

8. Per quale valore di \(k \) l’equazione

\[x^2 + kx + 4 = 0 \]
ha due soluzioni reali distinte?

A per \(-4 < k < 4\)
B per ogni \(k \neq 0 \)
C Per nessun valore reale di \(k \).
D per \(k < -4 \) e per \(k > 4 \)

9. L’espressione

\[\frac{3}{4 + a^2} \]
è equivalente a:

A \(\frac{1}{2} + \frac{2}{a^2} \)
B \(\frac{1}{4 + a^2} + \frac{1}{4 + a^2} \)
C \(\frac{1}{2 + a} + \frac{1}{2 + a} \)
D \(\frac{2}{(2 + a)^2} \)

10. L’equazione

\[\frac{4}{x^2 + x} = 0 \]

A Non ha soluzioni.
B Ha due soluzioni: \(x_1 = 0, \ x_2 = -1 \)
C E’ equivalente all’equazione \(4 = x^2 + x \)
D Ha come unica soluzione \(x = 4 \)
11. Il sistema
\[
\begin{align*}
3x + 3y &= 3 \\
10x + 10y &= 10
\end{align*}
\]
A. Ha come soluzione \((x, y) = (3, 10)\)
B. Non ha soluzioni.
C. Ha soltanto la soluzione nulla: \((x, y) = (0, 0)\)
D. Ha infinite soluzioni.

12. La disequazione \(x(x - 7) < 0\)
A. E’ equivalente al sistema \(\begin{align*} x < 0 \\
x - 7 < 0 \end{align*}\)
B. E’ soddisfatta per \(-7 < x < 0\)
C. E’ soddisfatta per \(0 < x < 7\)
D. E’ soddisfatta per \(x < 0\) e per \(x > 7\)

13. L’espressione \(\sqrt{x^2 + y^2}\)
può essere riscritta in modo equivalente nella forma:
A. \(x + y\)
B. \(|x + y|\)
C. \(|x| + |y|\)
D. Nessuna delle precedenti risposte è corretta.

14. Il 2% di 0,05 è
A. 0,025
B. 0,001
C. 0,0025
D. 0,0001

15. Qual è l’equazione della retta di coefficiente angolare 2 e passante per il punto \((-1, -3)\)?
A. \(-x - 3y = 2\)
B. \(y = 2x - 3\)
C. \(y = 2x - 1\)
D. \(x + 1 = 2(y + 3)\)
16. La retta di equazione
\[y = x - 2 \]
e la parabola di equazione
\[y = x^2 - 8x + 12 \]
A Non hanno punti in comune.
B Si intersecano in due punti distinti.
C Sono tangenti nel punto \((0, 2)\).
D Hanno infiniti punti in comune.

17. L’equazione
\[(x + 2)^2 + (y - 1)^2 = 4 \]
rappresenta
A Una circonferenza con il centro nel punto \((-2,1)\).
B Una retta passante per il punto \((-2,1)\).
C Una parabola con il vertice nel punto \((2, -1)\).
D Nessuna delle precedenti risposte è corretta.

18. Quale delle curve seguenti passa per l’origine e per il punto \((-3, -3)\)?
A \[-3x^2 - 3y^2 = 1 \]
B \[x^2 + 2y + x = 0 \]
C \[(x - 3)^2 + (y - 3)^2 = 9 \]
D \[xy = -9 \]

19 Nel piano cartesiano le due equazioni
\[3x - 2y = 1 \]
\[6x - 4y = 5 \]
rappresentano:
A Due rette parallele.
B Due rette perpendicolari tra loro.
C La stessa retta.
D Un fascio di rette di centro \((3, -2)\)

20. Determinare il punto che ha distanza uguale a 5 dall’origine degli assi.
A \((5, 1)\)
B \((\sqrt{5}, \sqrt{5})\)
C \((1, -4)\)
D \((-4, 3)\)